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Abstract

The goal of the Common High-Performance Computing (HPC) Software Support Initiative
(CHSSI) Computational Fluid Dynamics (CFD)-6 is to develop scalable versions of two Army
Navier-Stokes solvers that can efficiently utilize the Department of Defense's (DOD) HPC
resources. At the completion of this project, these codes will be made available to the DOD
Research, Development, Test, and Engineering (RDT&E) community for analysis and design
of weapons systems. This report documents the first 6 mo of this effort.
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1. Introduction

The primary goal of the Zonal Navier-Stokes (ZNS) Common High-Performance Computing
(HPC) Software Support Initiative (CHSSI) Computational Fluid Dynamics (CFD)-6 project is to
develop scalable versions of two Navier-Stokes solvers used by the Army. The two codes chosen
for this project are used by designers of projectiles and missiles to understand flow characteristics
of their particular designs. By producing scalable versions of these codes, more accurate flow
simulations will be achievable in less time, thus reducing the cost of the design process. In addition
to the primary goal, other features currently not in the codes will be added. These include a user
interface within a complete CFD environment, including grid generation and flow visualization,
more general boundary conditions; and an optional high-resolution upwind scheme. Also, a
triservice team of software developers, users, and support personnel for these codes will be
established. At the completion of this project, training courses will be offered on the use of this

software.

Sections 1.1 and 1.2 give a description of the two Navier-Stokes codes and the Distributed
Interactive Flow Field System (DIFFS). The remainder of this report documents our progress after

the first 6 mo of work.

1.1 ZNS Codes. The implicit version of the F3D code and the U.S. Army Research
Laboratory’s (ARL) explicit ZNS solver have been chosen for this work. The F3D code was
originally developed by Dr. Joseph Steger, while at both NASA at Ames and the University of
California at Davis. The F3D code solves the unsteady Reynolds averaged Navier-Stokes equations.
It currently uses a flux-split upwind finite difference scheme in the streamwise direction and central
differencing in the other directions — an option for upwinding in all three directions will be added.
The F3D code uses the Baldwin-Lomax algebraic turbulence model. There are many papers in the
literature [1-6] reporting results from this code and favorably comparing the code's results to

experiments for various projectile configurations (nonspinning and spinning).




The ARL explicit ZNS solver has been under development at ARL for the last decade and has
been used in numerous mission and customer CFD studies [7-12]. It solves the three-dimensional
Reynolds averaged Navier-Stokes equations using the McCormick scheme — an option for a more
modern high-resolution upwind scheme will be added. The ARL ZNS code was developed
specifically for implementation on parallel computers. Past efforts aimed at porting this code to the
Denelcor Heterogenous Element Processor (HEP), Cray X-MP, Cray 2, Cray Y-MP, CM-200,
CM.-5, and Intel Hypercube computers have demonstrated that it is well structured to run on a wide
range of parallel platforms, including the current generation of parallel architectures. DZonal is the
distributed memory version of this code, modified to run over the Network Distributed Global

Memory (NDGM) system (see appendix).

1.2 DIFFS. The DIFFS is a complete CFD environment developed at ARL. It tightly couples
grid generation, flow field solution, and visualization and provides a user-friendly graphical user
interface. It uses NDGM, a locally developed software library for implementing a virtual shared
memory environment. This complete computing environment will provide the means to transition

quickly other research codes to the user.

2. Scalable Performance and Validation Results

Our goal is to achieve software scalability, portability, and reusability among the Department of
Defense (DOD) scalable high-performance computing platforms by both scalar and parallel
optimizations. Over the last 6 mo, we have achieved much of this objective with our implicit ZNS
code. Section 2.1 addresses the implicit ZNS code, and section 2.2 addresses the explicit code. A
description of the benchmark and validation cases used for each code is given first. For comparison
purposes, a hardware overview of some of DOD’s scalable high-performance computing platforms

is given in Figure 1.



Hardware Overview

CRAY Research C90

-~ 1-8 CPUs

- 1 GFLOPS / CPU peak

~- 4 GB of memory /8 CPU

CRAY Research T3D

- 1-512 CPUs

- 150 MFLOPS / CPU peak

- 64 MB of memory /1 CPU
Silicon Graphics Power Challenge Array
- 1-96 CPUs

~ 300 MFLOPS / CPU peak

~ 2 GB of memory /12 CPU

IBM SP2

- 1-400 CPUs

- 266 MFLOPS / CPU peak

- 64-1024 MB of memory /1 CPU

* *ignores communication costs
* *ignores percentage of peak achievable

Figure 1. HPC Hardware Overview.
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C90

8 GFLOPS
4 GBytes
13D

76 GFLOPS
32 GBytes
SGI

28 GFLOPS
16 GBytes
SP2

106 GFLOPS
57 GBytes




2.1 Implicit ZNS Code.

2.1.1 Description of the Benchmark Case. Three-dimensional flow over a generic missile
configuration is our primary benchmark case for the implicit ZNS code. Calculations were made for
this missile at Mach number 2.5 and 14° angle of attack. The model consists of a 3-caliber ogive
and a 10-caliber cylindrical afterbody. The computational domain contains only half of the
missile—appropriate symmetry boundary conditions are imposed at the two symmetry planes in the
circumferential direction. Numerical results were obtained on a Cray C-90 supercomputer (PK)
using the original code, a Silicon Graphics (SGI) power challenge array (PCA), and a Convex
Exemplar using the new scalar and parallel optimized version of the code and a Cray T3D using the

new message-passing version of the code.

The computational grid consists of three overlapping zones: one upstream of the nose and two
on the missile body. The full grid consists of 189 points in the streamwise direction: 75 points in
the circumferential direction and 70 points in the normal direction for a total of 992,250 grid points.
Each zone is a structured mesh constructed using an algebraic grid generator. The grid outer
boundary is two diameters away from the surface of the projectile. Figure 2 shows an expanded view
of the grid near the ogive-cylinder junction region, highlighting a longitudinal and a circumferential
grid plane. Grid points are clustered near the afterbody surface to capture the viscous effects in the
turbulent boundary layer. The grid spacing used for the first point away from the body surface was
0.000005 calibers. The same grid was used for all cases considered here. In each case, the solution
was marched from free stream conditions everywhere, until the final converged solution was
obtained. The computed solutions are checked for agreement and then compared with the Defense

Research Agency (DRA) experimental data.”

Throughout this report, we will refer to the previous case as BM32. A second test case is also
used to monitor performance of this code. This case, referred to as BM32A4, is identical to BM32
with the exception that the grid was resized to 191 x 225 x 70. This case has over 3 million grid

points.

: Comparisons to the DRA data were part of the Technical Cooperation Program (TTCP) Weapons Technical Panel-2
(WTP-2) Key Technical Area (KTA) 2-12 collaborative exercise. The data were provided by DRA.
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Figure 2. Computational Grid for BM32: Zonal Grid 189 x 75 x 70.

2.1.2 Performance and Validation Results on Shared Memory Architectures. The results
presented in this section were obtained using the new reduced instruction set computer (RISC) and
parallel optimized version of implicit ZNS solver. Results were generated using ARL’s SGI PCA
and NRAD’s Convex Exemplar. Results were also generated on the C90 at the Corps of Engineers
Waterways Experiment Station (CEWES) (PK) for comparison purposes. All C90 results presented

were obtained with the C90 version of the code.

Figure 3 compares the pressure computed using the PCA and Cray C90. Both the wind side and
lee side pressure contours are shown after 1,800 time steps. The solutions are identical. As expected,
a strong shock wave is seen to emanate from the nose of the missile in the wind side. It is much
weaker on the lee side. Also, notice the asymmetry in the shock wave angle. Generally, the pressure
on the wind side is higher, and the pressure on the lee side is lower. One can also observe the flow
expansion at the ogive-cylinder corner. The shock and expansion waves are seen to pass through
the outer boundary rather smoothly, which results from the use of the nonreflective boundary
condition at the outer boundary. Figure 4 shows longitudinal Mach contours for the PCA solutions

at various time steps. They show that the solution has converged at 1,800 time steps.




-PK N=1800

PCA N=1800

Figure 3. Pressure Contours for BM32 Using the SGI PCA and the Cray C90.



N=1800

N=3000

N=5000

N=15000

Figure 4. Mach Number Contours for BM32 Using the SGI PCA.




Figure 5 shows the circumferential surface pressure distributions on the missile for various

longitudinal stations. One of the longitudinal stations is on the ogive section of the missile

(X/D = 2.4) and the others (X/D = 3.5, 8.5, and 11.5) are on the cylindrical section. Phi = 0°

corresponds to the wind side and Phi = 180° corresponds to the lee side. Computed results after

1,800 time steps are presented using the Cray C90 (PK) and the PCA, and are compared with the

experimental data. Both computed and experimental results show the same trends (i.e., higher

surface pressure on the wind side and low pressure on the lee side). Again, agreement between the

Cray and PCA solutions is excellent.
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Figure 5. Circumferential Pressure Distribution for BM32—Comparison to C90 Results and

Experimental Data.



Parallel- and RISC-optimized performance results for the F3D code running on the SGI PCA and

Convex Exemplar for BM32 and BM32A are given in Figures 6 and 7. For the benchmark data set
BM32, the 18-processor Power Challenge (75 MHz R8000) runs are roughly 3.0 times faster than

the in core version of F3D using one head of a C90 and 3.4 times faster than the out-of-core version

(using the Solid State Disk [SSD]). These comparisons have had the initialization and termination

costs removed, making this an asymptotic limit for a large number of time steps. The method for

removing those costs was to run two cases: one with a large number of time steps and one with a

small number of time steps. The run times were then subtracted and the net number of time steps

divided into the time to get the time per time step. It was this number that was compared. The

comparisons also compared central processing unit (CPU) time on the C90 to elapsed (frequently

called wall clock time) on the Power Challenge.

THE COMPARATIVE PERFORMANCE OF THE PARALLELIZED RISC OPTIMIZED VERSION

OF THE IMPLICIT CFD CODE F3D WHEN RUN ON VARIOUS PLATFORMS WHEN COMPARED
TO THE VECTOR OPTIMIZED VERSION OF THE SAME CODE WHEN RUN ON ONE HEAD

1000

800

600

400

SPEED IN TIME STEPS PER HOUR

200

L e e B S S Sy B B R B B B S

OF A CRAY C90 (GRID IS 191 X 75 X 70, KTA DATA SET)
_ﬂ_ CRAY Ch0 SPEED

"IN CORE SOLVER A CRAY C4 ADJUSTED SPEED
" UT OF CORE SOLVER USING THE S8 —.@ — CONVEX EXEMPLAR SPEED (Gl (BAL MEMORY)
A CORE SUL RN —eye— CC XM WS TED 8P 308 B0
THE RESULTS FOR THE CONVEX FXEMPLAR USING GLODAL o CONVEX LXTMP AR A'? LSTED SPLED (Gl ORALMEMORY,
MFMORY AND FOR THE RA 100 CHATLYNGE ARE PRELIMINARY &= CONVEXEXPMPLARSPEED LOCAL MEMORY,
—Bem  CONVEX EXEMPLAR ADJUSTLD SPEED (| CAT MEMORY:

RESUL TS AND ARE SUBJECT TO CHANGE

S POWER CHAILENGE SPEFD
SGI POWER CHALLENGE ADJUSTED SPLED
- e 24 PROCESSOR 200 Mz R44400 SGICHAL ENGE SPEED
v - 3 e 24 PROCESSOR 2% MHZ R4400 SGLCHATLINGE ADJUSTIO SPEFD
18 PROCESSOR SGIPOWER CHALLENGE SPTHD
18 PROCESSOR SGI POWER CHALLENGE ADMUSTED SPUED
THE ADJUSTED SPEED IS ATVUSTED TO REMOVE STARTNE
AND TERMINATION COSTS

5 10 15 20 25 30
NUMBER CF PROCESSORS USED

Figure 6. Performance results on BM32: Shared Memory Implementation of Implicit ZNS

Solver.




THE COMPARATIVE PERFORMANCE OF THE PARALLELIZED RISC OPTIMIZED VERSION

OF THE IMPLICIT CFD CODE F3D WHEN RUN ON VARIOUS PLATFORMS WHEN COMPARED
TO THE VECTOR OPTIMIZED VERSION OF THE SAME CODE WHEN RUN ON ONE HEAD

OF A CRAY C90 (GRID IS 191 X 225 x 70, BENCHMARK DATA SET)
400 — B CRAY Co0 SPEED
———

CRAY C50 ADJUSTED SPEED
@ - CONVEX EXEMPLAR SPFED (GLOBAI MEMORY)
s ~ & — CONVEX EXEMPLAR ADJUSTED SPEED (GLOBAL MEMORY:
-@-— CONVEX EXEMPLAR SPEED (LLOCAL MEMORY)
‘= CONVEX EXEMPLAR ADJUSTED SPEED (LOCAL MEMOFY)
| SGI POWER CHALLENGE SPEED
SGI POWEHR CHALLENGE ADJUSTED SPEED
300 + e 3 - 1BPROCFSSOR SGI POWER CHALLENGE SPEED
— 18 PROCESSOR i3 POWER CHALLENGE ALDJUSTED SPEED
THE ADJUSTED SPEED IS ADJUSTED 10 REMOVE STARTUR
L . AND TERMINATION COSTS

" INCORE SOLVER
" QUT OF CORE SOLVER USING THE SSD
i L THE RESULTS FOR THE CONVEX EXEMPLAR USING GI OBAL
200 MEMORY ARE PRELIMINARY AND ARE SULIECT TO CHANGE

SPEED IN TIME STEPS PER HOUR

100

15 20 25 30
NUMBER OF PROCESSORS USED

Figure 7. Performance Results on BM32A: Shared Memory Implementation of Implicit ZNS
Solver.

It is interesting to note that the relative theoretical peak speed for the hardware was 1.0 GF for
the C90 and 5.4 GF for the Power Challenge. Part of the difference for not achieving a comparable
speedup is the effect of waiting on cache and translation lookaside buffer (TLB) misses. Another
major difference is that it is theoretically impossible to get linear speedup for this code; therefore,
the best ratio that could have been achieved is closer to 5 to 1, and there are probably enough other

effects that even that number is unlikely to ever be achieved.

The data for the Global memory version of the Convex runs point out that this is a work in
progress, but that it is already clear from this and prior work that distributed shared memory
architectures are not simple extensions to the shared memory symetric multiprocessor (SMP)

programming paradigm. At least that is the case if you are interested in performance. It should also
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be noted that other jobs might be better suited for these extensions to the shared memory SMP

programming paradigm.

Preliminary experience with the new R10000-based Power Challenge and the 90-Mhz R8000

Power Challenge indicate that these machines are capable of running this code even faster.

2.1.3 Performance and Validation Results on Distributed Memory Architectures. The implicit
ZNS code has been rewritten for distributed memory architectures using parallel virtual machine
(PVM). We are currently developing this version on the Cray T3D. On the T3D, the PVM calls that
reshape the data prior to solving the block tridiagonal system have been replaced with Cray shared
memory (SHMEM) calls. This has resulted in a significant performance increase. The latest

performance results (given in Figure 8) reflect this change.

Figure 8 shows the timings for some of the most expensive subroutines. These results were
obtained using the new PVM version and the Cray C90 version of the implicit ZNS solver. On the
T3D, timings were obtained using 128 and 256 processors. At present time, we can achieve a
speedup 3.9 times that of a single processor Cray C90 using 128 processors and a speedup of 5.2
with 256 processors. For comparison purposes, the theoretical peak speed for 128 and 256
processors on the T3D are 19.2 and 38.4 times the speed of one head of the C90, respectively. There
appears to be two main reasons why the code is not achieving this level of speed-up. The first is the
apparent design limitations of the T3D. Secondly, for the particular problem size associated with
the benchmark cases, there is some loss of scalability, which is due mainly to the block tridiagonal

solver; most of the other major subroutines exhibit scalability (see Figure 8).

Our current approach to validating the T3D results is to compare the residual norm history with
the same from a Cray C90 calculation. Figure 9 shows such a comparison. Except for the case

where the residual is essentially zero, the norms are identical to six significant digits.

We have experimented with the bulk synchronous parallel (BSP) methodology for parallelizing

this code. This work is not yet complete. Preliminary results indicate that the BSP performance is

11




F3D Performance
BM32 52 Time Steps
- C90/F77 timings

MiscellaneousS. .o innr oo nnnens
Implicit Step. ..ttt ittt
Boundary conditions.........iiiiiiinninnn.
Tridiagonal solver up...
Tridiagonal solver down. P .
Fill tridiagonal z.......evvinnvnuennnnns
Fill tridiagonal y.........ccviiiniinnnnn.s
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- T3D/MP timings on 256 PEs

Figure 8. Performance Results on BM32: Distributed Memory Implementation of Implicit

ZNS Solver.

Miscellaneous..........ooiiiivninnennnnn
Implicit Step...vviiii it ittt
Boundary conditions...... .o iiinennnn
Tridiagonal solver UP.....ceeeveeeennnann
Tridiagonal solver down.......... N
Fill tridiagonal z........cevevununnnnnnn
Fill tridiagonal yv.....c.viiiinieiiinnnnnes
Right hand side............ e
Flux split jacobian Z.......vvevueunnnnnn
Flux split jacobian ¥.......vvunininnnn
Viscous jacobian.........ooiiiiiiiiiiiiinn
Turbulence model..........oviiinineennnnnn
Viscous right hand side..................
Smoothing..covvviiii it i
SCALE. ottt e e e
Boundary data in......... ..ot
Boundary data out..........viiunrrrnnannn

12

178.64
45.57
28.89

219.13

289.63

215.54

266.46

244.49

177.51

198.78

146.08

0.00
58.63
167.92
8.05
29.43
32.91

2307.64

20.60
15.83
12.09
103.09
126.87
49.77
53.63
36.20
31.94
31.12
41.65
0.00
15.46
35.32
3.13
8.10
8.81

593.61

23.56
20.64
13.12
62.93
115.36
33.82
37.26
20.87
18.60
21.47
27.15
0.00
9.55
22.50
1.77
6.06
5.70

440.37



F3D Verification
Numerical Result Comparison

- C90/F77 BM32 residual norm history

10, 1.539514718111274E-16

10, 2.976273150238765E-7 ] 63
10, 1.519006922192274E-6

20, 1.529994065244958E-16

20, 2.063416180116936E-6 E
20, 9.822818993217579E-6

30, 1.637157658973204E-13 | |48
30, 6.33558802443001E-6

30, 2.751908970212121E-5

40, 5.440819341052896E-12

40, 1.380431768828975E-5 M
40, 5.177911091345101E-5

50, 7.216221770382318E-12

50, 2.181499353368315E-5

50, 7.465101253422952E-5 | 10

- T3D/MP BM32 residual norm history

norm: step = 10 1l2norm = 0.324357537308127E-17

norm: step = 10 12norm = 0.297627315040179E-06 ] 63
norm: step = 10 12norm = 0.151900692225205E-05

norm: step = 20 12norm = 0.314541820947395E-17 E
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norm: step = 30 12norm = 0.163715694762361E-12

norm: step = 30 12norm = 0.633558802460311E-05

norm: step = 30 12norm = 0.275190897030783E-04

norm: step = 40 12norm = 0.544081933934850E-11

norm: step = 40 12norm = 0.138043176886223E-04 M
norm: step = 40 12norm = 0.517791109144100E-04

norm: step = 50 12norm = 0.721622177133689E-11

norm: step = 50 12norm = 0.218149935341319E-04

norm: step = 50 12norm = 0.746510125353012E-04 ] 0

Figure 9. Validation Results on BM32: Distributed Memory Implementation of Implicit ZNS
Solver.
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similar to the PVM/SHMEM version of the F3D code; however, when optimized, BSP libraries are
available for the Cray T3D, we expect to get better performance with BSP. In addition, BSP should
assure the portability of the F3D code to distributed memory architectures other than the T3D.

2.2 Explicit ZNS Code. The DZonal code, a distributed memory version of the Zonal code, is
the starting point for the CFD-6 CHSSI project’s explicit ZNS code. The DZonal code has been
under development at ARL for a few years and has evolved out of the Zonal code, a Cray shared
memory code. (See Clark and Edge [13] for more details.) The DZonal code relies on domain
decomposition and message passing. In the current version, message passing is implemented using

NDGM. The appendix describes NDGM in detail.

At this point, no significant coding changes have been made to this code under the CHSSI
project. The work has been focused mainly on characterizing the performance of this code on a

benchmark case. The work is described in the following sections.

2.2.1 Description of the Benchmark Case. We are currently using a wrap-around finned missile
as a validation and benchmark case for this code. The computational domain consists of a 5-zone
grid of approximately 1.4 million grid points with the following dimensions: (24 x 96 x 80),
(64 x 64 x 32), (96 x 96 x 80), (64 x 64 x 32) and (64 x 34 x 80).

This configuration was run on a Cray C-90 with the Zonal code, a Thinking Machines Corp.
CM-200 and CM-5 using a beta version of the Zonal code written in CM Fortran, and the SGI PCA.
The single CPU SGI PCA calculations were run with the C90 version of the Zonal code. The

multiprocessor calculations were obtained using the DZonal code.

The architectural differences of the machines where this application was run provide for an
interesting comparison. The Cray C-90 is a large shared memory machine at the Army Corps of
Engineers Waterways Experiment Station. The CM-200 is a single-instruction multiple-data set
(SIMD) parallel computer located at the Army High-Performance Computing Research Center
(AHPCRC). The Zonal code utilized 512 of the available 1,024 nodes, which are arranged in a

14



hypercube topology. The CM-5, also located at the AHPCRC, is a multiple-instruction multiple-data
(MIMD) parallel computer with 32 MB of local memory per cell. The Zonal code used 256 of the
available 864 processors. The SGI PCA is a cluster of 8 separate nodes. Each has 12 CPUs, 2-GB

main memory, ethernet, ATM, and HIPPI network connections.

2.2.2 Performance Results Using NDGM. The timings for the various calculations are given
in Table 1 in seconds per iteration, where an iteration is one time step for all zones. The Zonal code
on the C-90 is highly vectorized and its performance on a shared memory machine has been
documented previously. The CM-200 and CM-5 versions performed well on interior points of the
grid, but spent more than 50% of their time on boundary conditions. This demonstrates a high
communication penalty when the problem is decomposed, even on a high-speed communication

system.

Table 1. DZonal Performance Results for the Wrap-Around Finned Missile

Seconds/
Computer CPUs | Iteration Code
C-90 1 9.52 | Vectorized Zonal
CM-5 256 9.52 | CM Fortran Zonal
CM-200 512 30.0 CM Fortran Zonal
SGI 1 Node 1 89.5 C90
SGI 1 Node 10 7.69 | DZonal
SGI 2 Nodes 20 6.52 | DZonal
SGI 3 Nodes 20 4.59 | DZonal
[[SGL4 Nodes | 20 | 4.94 | DZonal

The performance on 1 CPU of the SGI, obtained with the vectorized version of the Zonal code,
shows the necessity for serial optimizations on RISC-based machines. Significant speedup would

be possible with code reorganization and loop restructuring.

15




Although the scalar version of the Zonal code does not take advantage of the architecture, it does
give a good basis for comparison to the parallel version. When running on multiple nodes of the SGI
PCA, the DZonal code used 10 of the 75-MHz R8000 processors (each node contains 12 CPUs; 10
were used for computation: one for the NDGM server and one for operating system [OS] processes).
To communicate between SGI nodes, NDGM uses the available high-performance parallel interface

(HIPPI). NDGM transfers across the HIPPI of the SGI PCA tend to be in the range of 40-50 MB/s.

While the times for DZonal code running on 10 CPUs is better than 10 times faster than the
scalar version of the Zonal code, it is important to remember that these codes are not exactly
identical. Better use of the available memory banks and cache may explain this speedup. In any

event, all NDGM ftransfers in this situation translate into system shared memory access that is fast.

As the code is spread to 20 CPUs across two nodes, we begin to suffer from communications
across the network. The speed of the HIPPI channel, however, helps to minimize these effects. With
an application this small, computation and communication are almost equal. Since only overlapping

planes will be written across the network, a larger problem should experience greater speedup.

Additional network communication is necessary as the code is spread across three nodes. This
additional communication, however, can be accomplished concurrently. Thus the additional
communication is small compared to the reduction in memory bank usage. Each node of the SGI
PCA has eight-way interleaved memory. By using three nodes, there are no more than seven DZonal

processes on any one node.

Once the saturation of the memory system has been relieved, however, addition of nodes only
results in additional communications. This is evident as the code is run on four nodes and 20 CPUs.
Additional CPUs would have little benefit since the communication and synchronization, in this

situation, is roughly three times the cost of computation.
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Clearly, there are many variables contributing to the performance of computationally intensive
codes on distributed systems. Therefore, it is not advisable to use these results to compare

performance of various computer architectures.

It is important to note that communication between DZonal processes was not "lagged," inner
and cross block overlaps were communicated every time step. It is common in parallel distributed
flow applications to only communicate every few time steps in order to reduce the impact of

communication. This practice was not employed here in order to provide a more direct comparison.

3. Demonstration Calculations

3.1 General. The work done, to date, on the demonstration calculations has been mainly on
problem definition. We have two primary test cases to demonstrate the software: steady-state
compressible Navier-Stokes solutions of a long-range artillery projectile and a spinning artillery
projectile at angle of attack. These represent current Army problems. Because of complex
geometry, the long range artillery projectile requires a large number of grid points to accurately
resolve the flow field. Accurate predictions of the Magnus force generated on a spinning projectile
at angle of attack are critical for trajectory calculations. The boundary layer, complicated by the
projectile spin, must be highly resolved to accurately predict the aerodynamic forces. Both of these

test cases are challenging applications for scalable computing.

A series of missile and projectile flow field simulations will be performed to demonstrate the
scalable ZNS solvers. Results will be compared to experimental data and to computed results using

other architectures, such as the C-90 and CM-5.

3.2 Spinning Projectile at Angle of Attack. The implicit F3d Navier-Stokes code will be used
to compute three-dimensional flow over a spinning projectile at 4° angle of attack with a spin rate
of 4,900 rpm. The model used will consist of a 3.0-caliber secant-ogive nose, a 2.0-caliber

cylindrical section, and a 0.5-caliber, 7-degree boattail. The sting-mount at the aft end of the
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projectile will also be included in the simulation. Details of the flowfield such as Mach number
contours and surface pressure distributions will be compared with experimental data. Aerodynamic
force and moment coefficients will be calculated and compared with the data as well. A similar

calculation was performed on a Cray-2 computer.

4. Establishing a DOD User Base: Users Group Meeting

On August 14, 1996, the first ARL ZNS users group meeting was held at ARL Aberdeen Proving
Ground (APG), MD. The purpose of the meeting was to describe, in detail, the project to the Navy
and Air Force participants and to solicit input and suggestions. The meeting was attended by Clint
Housh from China Lake, Steve Scherr from Wright Patterson, Drew Wardlaw from Naval Surface
Warefare Center (NSWC), Marek Behr from AHPCRC, Steve Davis from the Army Research
Office, Bob Post from High-Performance Technologies, Inc. (HPT1); and Charlie Nietubicz,
Jubaraj Sahu, Paul Weinacht, Karen Heavey, Harris Edge, Dan Pressel, and Pat Collins from ARL.

Clint Housh, from China Lake, expressed interest in benchmarking a scalable ZNS solver on a
lifting-body airframe configuration. This configuration has been analyzed in the past with other
codes, and experimental data exists. This is an excellent validation test case for our code. Clint’s
group does not have the resources to perform code development; so, they are very interested in

leveraging the scalable software ARL develops as part of this project.

Stephen Scherr from Wright Laboratory (WL)/FIMC is interested in using a scalable ZNS solver
to analyze the Advanced Compact Inlet System. His group is actively researching a portable scalable
CFD capability for complex geometries using explicit flow solvers on unstructured grids. The
WL/FIMC researchers have experience with porting codes to the SP2, the Paragon, and work station
clusters and have agreed to share their expertise with us. The exchange of performance results

between ARL and Wright Laboratory (WL) should prove beneficial.
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Drew Wardlaw from NSWC Dahlgren Division is interested in steady and unsteady
aerodynamics of missiles. His group has developed a number of CFD codes. Several of these codes
(ZEUS and SWINT) are widely used in the international missile community. Nearly all of his
group’s current work is performed on nonscalable DOD assets. As collaborators, the NSWC
Dahlgren group will use the scalable ZNS solvers to compute missile flow fields for the Standard

Missile.

The first ZNS-users group meeting was a success. We received good suggestions and positive
feedback from our non-Army partners. We intend to follow up on some of their suggestions. Our
code development efforts will be directed not just towards solving only Army problems, but towards

solving Navy and Air Force problems as well.
S. Summary of Progress and Milestones

The first 6 mo of the project have been focused mainly on developing scalable implementations
of the implicit ZNS code. This is nearly complete for both the shared memory and distributed
memory versions. Once this is finished, there is additional functionality that needs to be added—this
will be detailed in the software development plan. Work has been started to add more general

boundary conditions to this code, and a technical manual is being written.
The explicit ZNS code’s performance has been characterized on the SGI PCA using NDGM.

We are now close to the point where we can begin to merge the explicit code with the implicit code

in the DIFFS environment.
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With the growing availability of high-speed network connections, the communications between
processors becomes less of a bottleneck. For example, ATM to the local user's desk can sustain
multi-megabytes per second and HIPPI connections between a Silicon Graphics (SGI) Power
Challenge Array (PCA) realizes over 50 MB/s. The use of existing resources on a local area network
could provide the necessary aggregate memory size and computational power to perform large-scale

simulations of flow problems.

Programming a distributed memory system using explicit message passing, however, is more
difficult than programming a single, large shared memory. This is due to the significant amount of
bookkeeping necessary to coordinate the message passing activity between nodes. By simulating
a shared memory environment in a distributed memory system, one can take advantage of existing
resources to solve flow problems usually reserved for supercomputing facilities. Simulating a shared
memory environment also facilitates the porting of existing, shared memory flow codes to distributed
environments and allows other applications, such as scientific visualization programs, to easily share

data.

Network Distributed Global Memory (NDGM) presents one or more applications with a virtual,
unstructured buffer that is accessible to all processes concurrently. Client applications on
workstations or multiprocessors can read or write data to a virtual buffer by specifying a destination
NDGM address and a pointer in its local address space. To assist in the coordination of parallel

tasks, NDGM includes synchronization facilities such as barriers and semaphores.

Applications can connect to the virtual buffer at any time after creation. This allows various
applications to nondestructively monitor or actively participate in the overall computational system.
Intense computation, visualization, and process monitoring can execute on distributed facilities while
accessing the same data. NDGM relieves the application programmer from developing a message

passing protocol for sharing information.

The NDGM system consists of an Application Programmers Interface (API), an NDGM Server
program, and other NDGM utility applications. Calls to the API result in lower level messages being
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sent to the appropriate NDGM Server. Each server keeps track of its piece of the total virtual buffer.
The API translates the global memory address into a local address for the server. Requests to get and

put to the global buffer result in local memory transfers on the server.

Client programs use the API to access the virtual NDGM buffer as contiguous bytes. In contrast
to other systems, no structure is placed upon the NDGM buffer. The application can impose any
structure on this buffer that is convenient. In addition, NDGM is designed to implement a system
of applications in contrast to a single monolithic parallel application. The API includes facilities to
get and put contiguous memory areas, get and put vectors of data, acquire and release semaphores,

and to initialize and check into multiple barriers.

A client makes a call to ndgm_init() to connect to the system. If an NDGM server is not running
on the local machine, the user must specify the host name location of any NDGM server. Once
connected, the client automatically obtains a virtual address to hostname mapping. This allows the
API to map requests for data transfer to the appropriate NDGM server. Once initialized, clients can
make calls to ndgm_get() or ndgm_put(), to transfer blocks of data and ndgm_vector_get() or
ndgm_vector_put() in order to transfer noncontiguous data. For synchronization purposes, the API
provides calls to ndgm_barrier_init(), ndgm_barrier_wait(), ndgm_semaphore_get(), and
ndgm_semaphore_release(). Client programs can use these calls to coordinate their activity.
Checking into a barrier will result in the process blocking until the barrier value reaches zero.
Barriers automatically reset to the value set by ndgm_barrier_init() once they reach zero and all
waiting clients have been notified. Calls to ndgm_semaphore_get() will block until the client

owning the semaphore calls ndgm_semaphore_release().

An additional function, ndgm_dump(), results in requests for servers to write all or part of their

data to a disk file. This serves as a paralle] I/O facility.

All requests for data transfer and synchronization are handled by the NDGM server process. This
is a stand-alone program, started and killed via user commands, that waits for new connections from

clients and services their requests.
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Each server maintains a memory buffer that maps into the virtual buffer address space. This
buffer can be in one of three locations: local address space (obtained via malloc), system shared
memory, or a local file. If system shared memory is used, a client executing on the same physical
machine as the server accesses the shared memory instead of making requests to a server. This
access is transparent to the NDGM client application and results in faster data transfers. Using a file
as the server's local storage allows NDGM servers to start with their local memory already initialized

and provides a memory image on the local file system.

Since the NDGM server maintains a copy of its portion of the virtual shared memory buffer and
a client application is likely to maintain a working copy, the potential for duplication of data is
significant. When physical memory size is a constraint, applications must take care to maintain

minimal copies of data and scratch arrays.

NDGM servers in a distributed network are started by a Tcl/Tk utility. The utility provides a
graphical user interface that allows servers to be started via "rsh" commands. In addition to starting
the NDGM servers and initializing the global to local address mapping, the Tcl/Tk utility can
monitor NDGM access in a running application. Color bars show NDGM gets, puts, vector gets, and
vector puts while client applications are running. This provides a simple, visual, first debugging step

for client applications.

Node numbers (and TCP/IP port numbers) in the NDGM system are based on the users's UID.
This number can be overridden by use of an environment variable. By assigning node numbers at

run time, different users can run NDGM on the same machine and not collide.

The design goal of NDGM was to efficiently implement "put" and "get" functionality over
multiple message passing facilities. Therefore, while the API is insulated from the low-level
message passing, care has been taken to minimize the overhead of this level of abstraction. This

layered architecture allows additional message passing facilities to be supported in a heterogeneous

environment while maintaining a consistent APL




The API is implemented on top of the message passing interface. Similar in concept to
well-known message passing interfaces like PVM or MP], this layer provides a level of abstraction
freeing the upper layers from the details of reading and writing data. The NDGM message-passing
layer has fewer facilities than either PVM or MP], but is designed to pass NDGM data efficiently
with minimal copying. This layer provides calls to establish connections, send messages, probe for

incoming messages, read messages, and close connections.

Message headers are converted into external data representation (XDR) format by the API before
they are sent. This insures that machines with different internal binary formats can communicate.
The data within the message, however, are left unchanged. This allows for maximum speed and
reduces the number of times the data is copied or processed on networks with identical binary
formats. It is left to the application to do any necessary conversion of the data. To aid in this task,

a library of routines is included that utilizes the XDR library found on most UNIX systems.

The actual interprocess data transfer is accomplished by the "drivers." Current drivers include:
TCP/IP sockets, PVM, and Fifos. An Intel NX driver is currently available for use on the Intel
Paragon. Each driver has functions to open as a client, open as a server, read, write, and probe for
incoming messages. When possible, each driver also implements a "'select" function in order to

monitor several open connections. A single NDGM system can mix nodes utilizing different drivers.

NDGM is written in standard C and is very portability across Unix machines. It currently runs
on SGI PCAs, Cray C90 & J90 machines, and Sun work stations. Future plans are to implement
NDGM on Cray T3E & IBM SP machines and the ASCI machine. One potential disadvantage of
NDGM is its memory requirements. Since the NDGM server maintains a copy of its portion of the
virtual shared memory buffer and a client application is likely to maintain a working copy, the
potential for duplication of data is significant. When physical memory size is a constraint,

applications must take care to maintain minimal copies of data and scratch arrays.

28



NO. OF

COPIES ORGANIZATION

2

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC DDA

8725 JOHN J KINGMAN RD
STE 0944

FT BELVOIR VA 22060-6218

HQDA

DAMO FDQ

DENNIS SCHMIDT

400 ARMY PENTAGON
WASHINGTON DC 20310-0460

CECOM

SP & TRRSTRL COMMCTN DIV
AMSEL RD STMCM

H SOICHER

FT MONMOUTH NJ 07703-5203

PRIN DPTY FOR TCHNLGY HQ
US ARMY MATCOM
AMCDCGT

M FISETTE

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

PRIN DPTY FOR ACQUSTN HQS
US ARMY MATCOM

AMCDCG A

D ADAMS

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY CG FOR RDE HQS

US ARMY MATCOM
AMCRD

BG BEAUCHAMP

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

DPTY ASSIST SCY FOR R&T
SARD TT T KILLION

THE PENTAGON
WASHINGTON DC 20310-0103

OSD
OUSD(A&T)/ODDDR&E(R)
JLUPO

THE PENTAGON
WASHINGTON DC 20301-7100

NO. OF

COPIES ORGANIZATION

1

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797

AUSTIN TX 78720-2797

DUSD SPACE

1E765 J G MCNEFF

3900 DEFENSE PENTAGON
WASHINGTON DC 20301-3900

USAASA

MOAS AI W PARRON

9325 GUNSTON RD STE N319
FT BELVOIR VA 22060-5582

CECOM
PM GPS COL S YOUNG
FT MONMOUTH NJ 07703

GPS JOINT PROG OFC DIR
COLJCLAY

2435 VELA WAY STE 1613

LOS ANGELES AFB CA 90245-5500

ELECTRONIC SYS DIV DIR
CECOM RDEC

J NIEMELA

FT MONMOUTH NJ 07703

DARPA

L STOTTS

JPENNELLA

B KASPAR

3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

SPCL ASST TO WING CMNDR
50SW/CCX

CAPT P H BERNSTEIN

300 OMALLEY AVE STE 20
FALCON AFB CO 80912-3020

USAF SMC/CED

DMA/IPO

MISON

2435 VELA WAY STE 1613

LOS ANGELES AFB CA 90245-5500




NO. OF
COPIES ORGANIZATION

1 US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDN A MAJ DON ENGEN
THAYER HALL
WEST POINT NY 10996-1786

1  DIRECTOR
US ARMY RESEARCHLAB
AMSRL CS AL TP
2800 POWDER MILL RD
ADELPHI MD 20783-1145

1  DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AL TA
2800 POWDER MILL RD
ADELPHI MD 20783-1145

3  DIRECTOR
US ARMY RESEARCH LAB
AMSRL CILL
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

2  DIR USARL
AMSRL CI LP (305)

30



NO. OF

COPIES ORGANIZATION

1

ARMY HIGH PERFORMANCE
COMPUTING RSRCH CNTR

M BEHR

SUITE 101

1100 WASHINGTON AVE SOUTH
MINNEAPOLIS MN 55415

ARMY AEROFLIGHT DYNAMICS
DIRECTORATE

R. MEAKIN

MS 258-1

MOFFETT FIELD CA 94035-1000

ARL

AMSRLPSE

B PERLMAN

FORT MONMOUTH NJ 07703

DIRECTOR AHPCRC

T TEZDUYAR

B BRYAN

G CANDLER

1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN
55415

NAVAL SURFACE WARFARE
CENTER

CODE B44

DR AB WARDLAW

SILVER SPRING MD
20903-5640

NAVAL RESEARCH LAB
JBORIS

CODE 6400

4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

NAVAL RESEARCH LAB

R RAMAMURTI

CODE 6410

WASHINGTON DC 20375-5344

NO. OF

COPIES ORGANIZATION

1

NAVAL RESEARCH LAB
OCEAN DYNAM & PRED BR
DR J MCCAFFREY JR

CODE 7320

STENNIS SPACE CENTER MS
39524

US AIR FORCE WRIGHT LAB
WL/FIM

DR J SHANG

2645 FIFTH ST STE 6
WRIGHT-PATTERSON AFB OH
45433-7912

WL/FIMC

S SCHERR

2645 FIFTH ST STE 7
WRIGHT-PATTERSON AFB OH
45433-7913

WL/FIMC

BLDG 450

B STRANG

2645 FIFTH ST STE 7
WRIGHT-PATTERSON AFB OH
45433-7913

US AIR FORCE PHILIPS LAB
OLAC PL/RKFE

CPT S G WIERSCHKE

10 EAST SATURN BLVD
EDWARDS AFB CA 93524-7680

US AIR FORCE ROME LAB
RL/OCTS

R W LINDERMAN

GRIFFISS AFB NY 13441-5700

COMMANDER

CODE C2892

C HOUSH

1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555




NO. OF

COPIES ORGANIZATION

1

USAE WATERWAYS EXP
STATION

CEWES HV C

DR J P HOLLAND

3909 VICKSBURG MS
39180-6199

NCCOSC RDTE DIV

CODE 404

R A WASILAUSKY

53570 SILVERGATE AVE
SAN DIEGO CA 92152-5180

NCCOSC RDTE DIV

CODE 7601T

DR K BROMLEY

5180 SILVERGATE AVE
SAN DIEGO CA 92152-5180

DPT OF ASTRONOMY
PROF P WOODWARD
356 PHYSICS BLDG

116 CHURCH ST SE
MINNEAPOLIS MN 55455

CHSSI

DR R FOSTER

1110 N GLEBE RD STE 650
ARLINGTON VA 22201

32

NO. OF

COPIES ORGANIZATION

16

ABERDEEN PROVING GROUND

DIR USARL,
AMSRL-CI-HA,

C NIETUBICZ

W STUREK
AMSRL-CI-HC,

D PRESSEL

J COLLINS

D HISLEY

CZOLTANI

J GROSH

A PRESSLEY

TKENDALL

P DYKSTRA
AMSRL-WM-PB,

HEDGE

JSAHU

K HEAVEY

P WEINACHT
AMSRL-WM-TC, K KIMSEY
AMSRL-SC-S, AMARK



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

of g sugg for this burden, 10

August 1997

aingig A Al }Erwo

LY (Leave blank)

Progress, 1 Apr-30

Publlc reporting burden for this ot is to ge 1 hour per resp ing the time for ] g dats
gathering and malntaining the data needed, and and the coliection of Int I Send garding this burden or any other aspect of this
b and Reports, 1215 Jetferson

tors Secvices, D for Op

rk Reduction ProlectiQ/04-0188 Y ashing
3. REPORT TYPE AND DATES

0 0503,
COVERED

Sep 96

ARL Zonal Navier-Stokes Solvers CHSSI CFD-6 Project Annual Report,
1 April - 30 September 1996

James Collins, Daniel Pressel, Charles Nietubicz, Jubaraj Sahu, Karen Heavey,
Paul Weinacht, Harris Edge, Marek Behr,* and Jerry Clarke**

5. FUNDING NUMBERS

6U19CO

U.S. Army Research Laboratory
ATTN: AMSRL-CI-H
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-MR-364

HPC Modernization Office, ATTN: Dr. Roger Foster
110 N. Glebe Rd. , Suite 650
Arlington, VA 22201

10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

* Army High Performance Computing Research Center
**Raytheon E-Systems

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

the Department of Defense's (DOD) HPC resources. At the completion of this

weapons systems. This report documents the first 6 mo of this effort.

The goal of the Common High-Performance Computing (HPC) Software Support Initiative (CHSSI) Computational
Fluid Dynamics (CFD)-6 is to develop scalable versions of two Army Navier-Stokes solvers that can efficiently utilize

available to the DOD Research, Development, Test, and Engineering (RDT&E) community for analysis and design of

project, these codes will be made

14. SUBJECT TERMS

Navier-Stokes, scalable algorithms, CHSSI, CFD-6, CFD, NDGM

17. SECURITY CLASSIFICATION .-} 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

OF ABSTRACT
UNCLASSIFIED

e e e ——————————————————
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

15. NUMBER OF PAGES

35
16. PRICE CODE

UL

NSN 7540-01-280-5500

33

Standard Form 208 (Rev. 2-89)
Prescribed by ANSI Std. 23918 298-102




INTENTIONALLY LEFT BLANK.

34



USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author _ARL-MR-364 (Nietubicz) Date of Report _August 1997

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old

or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code
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